

Ruediger R. Asche�Microsoft Development Network Technology Group

Created: February 25, 1994

Abstract

This article provides an introduction to writing hardware device drivers for the Microsoft® Windows®, the next version of Windows (called Windows 95), the MS-DOS®, and the Windows NT™ operating systems. It covers the input/output (I/O) models of each particular operating system, as well as driver design and debugging strategies.

Introduction

Let us assume that you have recently been hired by a company that manufactures hardware devices. Your assignment is to write device drivers for the NPZ-3140 series of your company's top-selling adapter cards. Your marketing group says that they want to cover as many operating systems on the market as possible; thus, your drivers should ideally work for MS-DOS®, Microsoft® Windows®, UNIX®, Windows NT™, and OS/2®. The manager who has hired you has full confidence in your abilities and does not know diddlysquat about computers, so you are left on your own, with not the slightest idea of how to tackle this assignment.

If you fit this description, this article is for you. I try to provide you with all the information you need to know in order to start developing your drivers for MS-DOS, Windows, Windows NT, and even the next version of Windows, called Windows 95. (No, I will not elaborate on either UNIX or OS/2 here—sorry.)

The first section will cover the basics of device driver writing, whereas the second section describes the system architectures of the Windows NT and Windows 95 operating systems and how and where device drivers fit in. The final section outlines the pragmatics of device driver writing, that is, the tools you need to develop, debug, and test your drivers, and how to utilize them.

In this article, I will deal with two families of PC-based operating systems: the MS-DOS/Windows family and the Windows NT family. You will realize that the major difference between these families is that Windows NT is a designed system, whereas the MS-DOS/Windows stream has evolved over time and, therefore, carries a number of inconsistencies on its back. While the input/output (I/O) system of Windows NT has been designed to incorporate a multitude of I/O devices and technologies from the very beginning, MS-DOS was originally meant to run on fairly restricted hardware. As the IBM-compatible PC became more popular, however, support for new and more powerful hardware and technology had to be added, but since the systems had not originally been designed for flexibility and extensibility, the new support more often than not introduced a new application programming interface (API) set and an I/O model that would not fit in very well with the existing ones.

Device Drivers: The Basics

Device drivers serve several different purposes. In their purest form, they are the link between software and hardware. Depending on your point of view, you can see them either as part of the software (because they are generally implemented in software) or as hardware (because they are closely coupled with the hardware device they support, and the rest of the software cannot easily figure out which task is done by the driver and which by the hardware device).

Of course, this is a simplified definition. Many drivers do not, in fact, provide support for real hardware devices (such as mice, network cards, or disk controllers), but instead provide support for some logical concept, such as a file system, a network protocol, a logical random-access memory (RAM) drive, or a SCSI device class. For the general discussion, however, it is safe to state that a device driver is in some form responsible for providing a link between software and a physical I/O device.

The term software is deliberately generic—while a device driver normally communicates mainly with an operating system, it used to be fairly common (at least in the PC world) that applications were shipped with (sometimes significant) sets of device drivers that were specifically tailored to interface between the application in question and the hardware devices. I will not deal with application-specific device drivers here unless specifically mentioned because those kinds of drivers are seen less and less.

Normally, a device driver is part of an abstraction mechanism, that is, a software architecture that provides applications with hardware-independent, high-level access to I/O functionality while the lower, hardware-dependent levels are encapsulated in the device driver. For example, applications generally do not care where on a storage device a file resides; instead, they submit generic calls to the operating system to open, access, and close a file, and it is the task of the operating system and the device drivers to cooperatively locate the file on the storage device and read from or write to the correct physical locations of the device. Figure 1 depicts the control flow of a user request to the hardware device graphically. The advantage of this architecture is that no change needs to be made to the application if the hardware is changed.

�

Figure 1. Pure I/O flow model

The user interacts with an application. When he wants to perform some kind of I/O, say, save a file to disk, he asks the application to do the operation. The application will, in turn, submit the request to the operating system through the use of an application programming interface (or API, for short).

The API, as mentioned before, will deal with the requests in a high-level, device-independent way (such as through a call to SaveFile, a function that might be provided by the operating system). The operating system and the drivers will translate the call into something the hardware can understand. In order to do that, the operating system calls into a driver through a different interface, the SPI (or systems programming interface). Note that the term systems programming interface is not common terminology; generally all functional interfaces are called APIs. I use this new term to point out that there are essentially two different functional interfaces here.

The SPI reflects the I/O model, that is, the implied flow of control that the operating system defines for I/O calls on their way from the application to the hardware. The more general the I/O model, the more abstract the SPI tends to be; on the other hand, a more general I/O model will be able to incorporate more conceptually different hardware device types. For example, as we will see later on, the Windows graphical operating system defines different I/O models for keyboard and mouse input, and an even different model for output; consequently, drivers for those types of devices bear little resemblance to one another.

Figure 2 illustrates the same scenario for application-specific device drivers.

�

Figure 2. Application providing its own driver

The case illustrated in Figure 2 rarely occurs in modern operating systems. However, it happens frequently that an application does communicate with the driver directly through a well-defined "back door" interface often called IOCTL (or I/O control):

�

Figure 3. Application communicating with drivers via I/O control calls

This IOCTL architecture is provided so that the I/O model can be general enough to incorporate different device types, yet still have applications control the different device types in distinct, well-defined ways. For example, both a teletype and a serial communications port can be viewed as character devices that allow for bidirectional I/O, so it makes sense to apply the same I/O model to them; however, an application must be able to control a serial port differently from a teletype. For example, applications need to set the data transmission rate and query the communications status on a serial port, whereas they might want to query the teletype keyboard for specific character strokes (such as a control key). That kind of device-type-specific control is provided through the IOCTL interface.

Device Drivers for Microsoft Operating Systems

Microsoft provides two major operating-system families: Windows 95 (and its ancestors, MS-DOS and 16-bit Windows) and Windows NT. This does not imply that your device-driver development is limited to two types of drivers; on the contrary, you will be amazed to hear that there are as many as eight types of drivers that you need to worry about, let alone a few classes of "twilight drivers" that are not formally labeled as such but in reality serve the function of device drivers. Let us look at the system architectures of Windows NT and Windows 95 to figure out where your hardware comes into play.

Windows 95 and the Evolution of an Operating System

In the beginning there was MS-DOS. MS-DOS was an operating system designed for a fairly fixed hardware setup; when MS-DOS was designed, there was little need for a flexible interface that would have to be adapted to a multitude of different devices.

I will elaborate on the MS-DOS system architecture quite a bit because, for compatibility reasons, the MS-DOS API will persist, even though the MS-DOS–based architecture, as we will see, is being modified piece by piece. Thus, even for Windows 95 and Windows NT, there is still some degree of support for the MS-DOS model.

Windows Printer Drivers

Printers under Windows used to be treated more or less like display devices, a fact that reflects one of the architectural peculiarities of the Windows graphics device interface (GDI): To an application, output devices are represented by a device-specific data type called a device context (or DC). A Windows-based application that wants to perform graphics output will request a DC for either a printer or the display from Windows and then for the most part merely submit output calls without really bothering about what the output device is. Windows would in any case call back into the device driver; a set of IOCTL functions (to be accessed through the API function Escape) allows the application to specifically address a printer (for example, determine when the end of the current page to be printed has been reached).

Consequently, a printer driver used to look very much like a display driver. A printer driver had to implement roughly the same SPI as a display driver. The back end of a printer driver, however, does not address the hardware directly, but instead outputs the binary control sequences to the printer via an interface to the spooler (which in turn addresses the parallel communications port, which may be redirected by the network).

The downside of this setup was that a lot of valuable time and money was wasted on writing multiple drivers for printers that only differed very slightly in technology. For example, most raster printers are based on very similar technology, and therefore, one printer driver, slightly altered for each model, would be sufficient to drive many different printers.

Based on this idea, the universal printer driver was introduced. Most printers under Windows are now accessed by only one driver, UNIDRV.DLL. The printer-specific data is encapsulated in a data file from which UNIDRV.DLL reads the printer-specific data at run time. In order to adapt UNIDRV.DLL for your printer, you can employ UNITOOL.EXE, a Windows-based application that allows you to interactively design your unidriver-compatible printer driver (frequently also referred to as a miniport driver).

Printer drivers for non-unitool printers (such as Postscript printers) must still be implemented like display drivers, the major difference being that on the low end the driver will not communicate with the hardware but with the spooler. (The Windows kernel exports a spooler interface to be accessed by the driver; this interface is documented in the Microsoft Windows version 3.1 Device Driver Kit (DDK) Device Driver Adaptation Guide).

Number	Driver Type	Description

2.1	Windows unitool-based printer drivers	Basically data files that encapsulate the differences between printer technologies for raster printers.

Installable Device Drivers

I mentioned earlier that in terms of the system architecture, there is no way for Windows to distinguish between physical drivers and other DLLs. This implies that a physical driver other than a system-provided driver can only be loaded by an application and will be unloaded by Windows as soon as the last application that links to it is freed from memory. In addition, there is also no straightforward way for a driver to determine whether it is active (for example, if the user enters a full-screen MS-DOS box, all of the Windows graphical user interface becomes inactive). This setup posed some serious problems to some of the advanced enhancements to the Windows architecture; in particular, it was difficult for the multimedia and pen components of Windows to work well with that small degree of control. Can you imagine your computer running a sound card for which a driver can only be loaded with an application?

For this reason, the concept of installable device drivers has been introduced. In order to write an installable device driver, you write a DLL (just like before), but that DLL must export a function called DriverProc that processes system notifications. Through the help of a new Windows interface, your application (or the system) can now install, uninstall, load, unload, enable, and disable drivers independent of an associated application. This feature, although designed for multimedia and pen drivers, as mentioned before, can also be exploited by your custom driver.

Number	Driver Type	Description

2.5	Installable Windows drivers	DLLs that receive system notifications and can be dynamically installed and uninstalled. Installable drivers must be written for multimedia devices (wave input and output devices and MIDI input and output devices); all other drivers, except for display drivers, can optionally be implemented as installable device drivers.

The Virtual Machine Manager (VMM)

Strictly speaking, Windows is not an operating system, but rather a family of operating systems. When your computer is running enhanced mode Windows version 3.1, in reality it runs two operating systems at the same time, namely, Windows itself and a low-level operating system called the virtual machine manager (VMM). The main purpose of the VMM is to provide an environment in which several MS-DOS–based applications can execute at the same time with each of them believing that they run on a dedicated machine. This works only because Intel® has provided its processors of the series 386 and above to execute in a so-called "virtual 86 mode," which to MS-DOS looks almost as if it would run in MS-DOS's native mode (real mode) but can be totally controlled by a low-level operating system such as the VMM. The processes in this multiprocess architecture are known as virtual machines (or VMs). In Windows enhanced mode, the Windows graphical environment itself runs in the so-called system virtual machine, which enjoys a few privileges but is otherwise treated just like any other virtual machine.

The VMM is an extensible operating system whose core and standard components are provided by Microsoft. By writing additional modules called VxDs (virtual device drivers), software and hardware vendors can complement the VMM, mostly in order to aid virtualization, but recently a lot of VxDs have been written to provide Windows-based applications with services that can only be realized with the help of VxDs, such as providing communications mechanisms among MS-DOS–based applications.

It is kind of hard to explain how VxDs fit into the picture for you as a device driver writer. To illustrate this, let us assume that your hardware device interrupts the CPU whenever something significant happens, and the application, in turn, submits I/O calls to a specified port to request information. Consequently, your device driver will establish an interrupt hook to process information from the device and submit the I/O calls on behalf of the application.

This holds true regardless of whether the hardware device is virtualized or not. It is the main purpose of the VxD to look at all hardware interrupts before your physical device driver processes them and, in turn, to look at all I/O calls before the hardware device receives them. The driver does not care whether it sees real physical interrupts or regurgitated ones, as long as they look real.

By the same token, the driver does not care whether the I/O calls it submits really do go to the hardware or will be first seen by a VxD that will then decide what to do with them, as long as it looks to the driver as if the communication with the device is the way it is supposed to look.

Think of it as Santa Claus. Kids do not really care whether their Christmas wish lists go directly to Santa or Dad, and the toy retailers do not care whether they sell to Santa or Dad. If you (Dad, or the VxD, for that matter) do a good job in virtualizing Santa, your kids (collectively modeled by a virtual machine as opposed to the neighbor's kids who are a virtual machine of their own) will firmly believe that they interact with the one and only Santa, while in reality they deal with a virtual Santa. Virtualization on the computer level works in a similar way.

The catch is that virtual machines can be very demanding kids. You might have several MS-DOS–based applications with their own drivers running, each of which addresses the hardware directly (or at least believes it does so), including interrupt handlers and I/O port accesses of their own. To correctly virtualize the hardware, a VxD may have to perform fairly elaborate tasks.

Note that writing virtual device drivers is something totally different from writing Windows device drivers. As the Windows 3.0 DDK Virtual Device Adaptation Guide states, "You do not need to know anything about Windows to write a virtual device driver." (17-1) This strict separation between applications and device drivers applies less to Windows 95, where a new architecture called "appy time events" has been introduced that allows VxDs to interact closely with Windows DLLs. (Please refer to my article "What's New in Windows 95 for VxD Writers" for details.)

It may be the case that if your task is to write a device driver for Windows, you will need to provide both a physical device driver and a virtual device driver. This holds true for all display devices, most network devices, possibly some standard devices, and probably custom devices you need to support.

It should be noted that VxDs have much more power than merely that of providing hardware virtualization. Frequently, VxDs are written to replace or complement former MS-DOS device drivers or TSRs. The merit of doing so is that VxDs do not generally take up space in global conventional memory, which is still a bottleneck in Windows 3.1, and applications that rely on communication with a TSR will not have to be modified. (A VxD can be made to behave almost exactly like a TSR as far as V86-mode applications are concerned.) Also, since VxDs run in protected mode, expensive mode switches are avoided when you go for a VxD solution. In general, VxD-based drivers will be faster than MS-DOS drivers.

PC programmer's folklore has recently made VxDs an extremely hip concept, and you see a number of VxDs on the market that provide numerous nonvirtualization tasks, such as providing communications channels among MS-DOS virtual machines, interfacing between MS-DOS–based applications and Windows DLLs, or providing 32-bit Windows memory to MS-DOS–based applications.

For 95 percent of all applications written for the Windows graphical environment, there should not be a need to interface with a VxD at all. Note that many of the aforementioned VxD utilizations will not apply to Windows NT or Windows 95, so any reliance on VxDs will nail your applications to a particular platform.

Number	Driver Type	Description

3	Virtual device drivers	Drivers that help the VMM in virtualizing hardware to Windows-based and MS-DOS–based virtual machines.

Windows 95 Layered I/O Drivers

As I mentioned before, Windows implementations up to and including Windows version 3.0 did not process file system calls themselves but rather called into MS-DOS to access file storage media. One of the main problems with this approach was that the processor had to switch back and forth between different execution modes several times in order to satisfy one request, and the resulting overhead slowed down the execution of the system quite a bit.

To relieve this problem, Windows 3.1 introduced a new architecture that employed several VxDs to process calls to access the disk controllers in protected mode instead of V86 mode, thereby cutting down on the number of mode switches. Another benefit of this new architecture was that it allowed INT 13h to be called nested so that MS-DOS–based applications could now be paged, which was not possible before because of reentrancy problems.

Windows 95 goes even further in putting MS-DOS out of work. Beginning with Windows 95, all MS-DOS file system calls are processed in protected mode in a VxD. Somehow related to the layered device driver architecture that we will discuss later on for Windows NT (the difference being that Windows NT's architecture is much more general), a complete new I/O system architecture has been designed. This architecture addresses storage devices and allows for a much greater control and flexibility over the control flow. The heart of the architecture consists of two Windows 95 novelties: the dynamic VxD loader (VXDLDR.386) and the layered I/O system provider VxD (IOS.386). It is the main responsibility of the IOS VxD to catch I/O calls that user-mode applications perform to file storage devices and route them to a set of layered VxDs that will cooperatively process the calls. The nice thing is that the lower end of the I/O model (that is, the drivers that communicate directly with the hardware) are in part compatible with the Windows NT model, which we will discuss in the next chapter (in part because this applies only to SCSI miniport drivers).

Beginning with Windows 95, there should no longer be any reason to write an MS-DOS device driver or TSR. As I pointed out before, VxDs can achieve exactly the same functionality; they leave a smaller footprint in conventional memory and generally execute code faster. Under Windows 95, system calls are not normally relayed to global V86 code; however, if there is an existing MS-DOS driver or TSR that must be called into for compatibility reasons (for example, an existing encryption/decryption driver), you can tell Windows 95 to still call down to V86 mode. This works through yet another Windows 95 novelty, the so-called safe driver list, to which are added all MS-DOS drivers whose functionality Windows 95 suspects is being taken over by a VxD. If there is an MS-DOS driver installed that is not on the safe driver list, Windows 95 will determine what software interrupts are hooked by that driver and chain the calls down to that unsafe driver.

Finally, it should be noted that TSRs must undergo major difficulties to work correctly in multithreaded or multitasking environments. Under Windows 3.1, it is possible to make TSRs multi-VM-compliant by instancing TSR data and employing the INT 2fh interface to control VM switching, but under new multithreaded architecture of Windows 95, it may very well be even more difficult to get the TSRs to work correctly.

Furthermore, all direct interaction between applications and device drivers, aside from the DeviceIOControl API (which has been defined by Windows NT and adapted by Windows 95), is discouraged and would require a certain amount of work because 32-bit applications cannot easily communicate with the hardware due to the architecture of Windows 95. For details, please refer to my article "What's New in Windows 95 for VxD Writers."

The other Windows 95 system VxD I mentioned before, VXDLDR.386, has been designed to be able to dynamically load and unload device drivers. Except for Windows installable device drivers, no type of driver mentioned so far can ever be unloaded once it is are loaded (save after a system shutdown), and many drivers (for example, MS-DOS device drivers) can only be loaded at system boot time.

The dynamically loadable VxD interface allows Windows 95 to support more sophisticated hardware, such as dockable workstations, and provides a mechanism to reduce the footprint of VxDs that do not need to be loaded all the time.

Number	Driver Type	Description

4	Windows 95 Plug-and-Play drivers	Dynamically loadable VxDs.

4a	Windows 95 file system drivers	Plug-and-Play drivers that are embedded in the Windows 95 layered I/O system structure. On top of employing the VMM's system services, they use the system services provided by the I/O system VxD IOS.386.

Windows NT

If you have begun to be really discouraged because the MS-DOS/Windows/Windows 95 family of operating systems is extremely fragmented and has you put a lot of work and design into a seemingly simple device driver, you should look into the Windows NT system architecture. Windows NT has been designed with very ambitious goals in mind, one of them being to provide a very generic I/O model that incorporates as many different I/O devices as possible. Another Windows NT design goal was to make the operating system general enough to run on different hardware platforms, implying that the parts of Windows NT that interact with device drivers must be totally hardware-independent.

The Windows NT I/O Model

When looking at the Win32® API, you will notice that there are very few functions to access specific device types. For example, there is no OpenComm function anymore as in the 16-bit Windows API, so how does one access a communications port under Windows NT? Simple, through a call to CreateFile. Once a communications port has been successfully opened, calls to ReadFile and WriteFile will communicate through the communications port, just as they would be used to access a file.

As far as an application is concerned, Windows NT treats all input/output streams absolutely alike. When an application tries to open an I/O stream (regardless of whether the I/O stream corresponds to a file on a hard disk, a communications port, a file on a remote logical network drive, a universal naming convention (UNC) file, or whatever), the Windows NT kernel analyzes the name of the stream and, employing a mechanism known as "symbolic links," decides what driver to pass the request to. Please refer to the discussion in Helen Custer's Inside Windows NT (1993, pp 53-68) for more information on how this works. Once an appropriate driver has been found, Windows NT returns to the user-mode application a handle by which the I/O stream can be accessed. Whenever an I/O request is submitted, Windows NT will dispatch the request to the appropriate driver as identified by the handle. This way, one API set is sufficient to address almost all hardware devices, and your driver will need to implement a fairly generic SPI function set.

All drivers that you can write for Windows NT will fall into one of three categories: user-mode drivers, kernel-mode drivers, and virtual device drivers (VDDs), which should not be confused with Windows 95 VxDs. One more group of programs fall roughly into the category of drivers that are services. In a nutshell, a service is a background user-mode process that may act as a server process for all applications. For example, access to dynamic data exchange (DDE) or remote procedure calls (RPC) is provided by services. From the point of view of a service developer, a service looks a little bit like an installable device driver under Windows 95 in that it will receive system notifications and can be installed and loaded by the system, but a service is a process and not a DLL (as an installable driver is); plus, installable Windows 95 drivers are 16-bit drivers (which, of course, do not exist under Windows NT).

One of the really cool features of Windows NT is that it provides only one interface through which both services and kernel-mode drivers can be installed and loaded, the so-called service control manager. The service control manager can access both the local machine and a remote machine. Services and kernel-mode device drivers are referenced in the same format and section in Windows NT's system registry. Both services and kernel-mode device drivers can be started and (possibly) stopped either statically or dynamically, or through different techniques—either through software API calls or manually by the user using control panel applets or command-line commands such as "net start."

Note, however, that this architecture does not necessarily make the process of setting up and configuring a driver easier. To the user and system administrator, there are a number of different means to install and configure the driver, almost all of which can be found in Windows NT's control panel, such as the network, drivers, devices, or system control panel applets. However, eventually all of the changes that are being made through any of those techniques will get reflected in the same registry subtree.

Win32 User-Mode Drivers

Win32 user-mode drivers pretty much correspond to what I described earlier as physical drivers for 16-bit Windows; they are support modules that are used by the Windows NT graphical environment to implement the systems programming interface (SPI) from Windows to the driver.

Those drivers are labeled user-mode drivers because Windows NT distinguishes between two processor modes: user mode and kernel mode (sometimes referred to as executive mode). User mode is the less privileged mode; the architecture of Windows NT executes both user-mode applications and protected subsystems (such as the Windows NT graphical environment) in user mode, whereas all I/O device drivers execute in kernel mode.

The good news is that the number of drivers you need to write on this level is much smaller than under 16-bit Windows. Following the above discussion about the generic I/O model under Windows NT, there is no user-mode mouse, keyboard, or communications driver anymore; neither should there be any need to implement multimedia-type drivers as user-mode drivers (unless performance issues would force components to be written in user mode). The Windows kernel, which under 16-bit Windows defined its own disjoint SPIs for all of the above types of drivers, in the protected Win32 subsystem under Windows NT only needs to call CreateFile for the appropriate device type, which implies that the drivers for those devices run in kernel mode.

The only devices for which the kernel mode I/O model is not applicable are display output devices. While kernel-mode drivers are provided for displays, for performance reasons the Win32 subsystem does the actual work of translating an output call made in the GDI model to one that a hardware device can process. (The kernel-mode device driver exposes an interface to the user-mode driver to manipulate video memory directly.)

Note that, analogous to 16-bit Windows, there is a universal printer driver architecture that allows you to write drivers for certain printers interactively using UNITOOL.EXE. For non-unitool printer drivers, the discussion is analogous to 16-bit Windows.

Number	Driver Type	Description

5	Windows NT user-mode drivers	Display drivers that map the Windows graphics model onto output device hardware and non-unitool printer drivers.

Getting to Work: How to Write Your Driver

After all the theory, we are now ready to go to work. Let us look at the most common problems that your driver needs to attack. We will then see how those steps apply to the different types of drivers as explained before. Eventually, we will put together a list of all the driver types and their peculiarities.

This is what you need to do in your driver:

1. Process input from the hardware as well as output to the hardware.

Apparently, this step only applies to physical-device drivers, not intermediate ones. Generally, communication between hardware and software is realized through one of the following three techniques (or any combination of them, depending on how the hardware is implemented).

Hardware interrupts generated by the device

If your device supports hardware-interrupt generation, you will need to provide a hardware-interrupt handler. Every operating system provides a mechanism to do that; under MS-DOS, the process is very closely related to programming the programmable interrupt controller chip 8259 (that is, the relationship between a hardware interrupt number and its corresponding software interrupt is generally hardcoded, as well as the I/O sequence to finish processing and masking/unmasking an interrupt), whereas under Windows NT and the VMM, very generic calls are provided to intercept an interrupt vector and process an interrupt.

Note that the hardware-interrupt reflection mechanism in the MS-DOS/Windows family of operating systems is fairly convoluted and intricate. A hardware interrupt can be hooked by an arbitrary number of V86 drivers, an arbitrary number of protected user-mode DLLs, any number of VxDs, or any combination thereof. It is even possible for a user-mode application to take ownership of hardware interrupts on the VxD level; the corresponding interface (the bimodal interrupt handler interface) has been provided mainly to relieve performance problems. Check the article "Bimodal Interrupt Handlers" for details.

Hardware-interrupt processing is a fairly tricky task in all operating systems because you need to be aware of whether hardware-interrupt handlers can be reentered (which will impose certain requirements on your code) as well as ensure that generally all code and data that is touched by a hardware-interrupt handler is always resident in memory. Furthermore, it is normally the case that many hardware interrupts will not be processed while another hardware-interrupt handler is executing; thus, you will generally fine-tune your interrupt handlers so that they use up as few CPU cycles as possible. Also, due to the asynchronous nature of hardware interrupts, it is very possible that writing the interrupt handler may deadlock the system or corrupt data in the usual pathologic, rarely reproducible manner that is typical for asynchronous programming. (You might want to refer to the series of articles on multithreading in the Development Library, for example, "Synchronization on The Fly" or "Detecting Deadlocks in Multithreaded Win32 Applications.")

I/O calls submitted to the device

The keys to this communication strategy are two seemingly innocent machine language calls called in and out. (The terminology is taken from the x86 architecture; on MIPS®-based machines, the calls are named differently, but serve the same purpose.) Each hardware device that provides for I/O-port–based communication can be attached to one or more unique ports that are identified to the main processor by a number. By writing a specified bit pattern to a port or reading a bit pattern from the port, the hardware communicates with the CPU. Your device driver will need to submit those calls. Note that under Windows NT, port access is available through platform-independent input/output SPIs provided by the operating system.

Many virtual device drivers that provide hardware virtualization will intercept I/O calls in order to sort out concurrent access to a hardware device from multiple MS-DOS–based applications.

Direct memory access (DMA)

This is a fairly common technique for devices that make large data transfers. The hardware adapter and the processor decide to share a specified range of memory that both sides can access asynchronously. Under Windows NT, DMA is provided as part of the hardware abstraction layer module (HAL) and can be accessed from the lowest-level kernel-mode device drivers.

DMA is a common cause for incompatibilities among MS-DOS drivers when executing in enhanced-mode Windows. The reason for this is that memory is virtualized under the VMM such that memory that looks physically contiguous to an MS-DOS driver is, in fact, remapped somewhere else. MS-DOS or Windows drivers that need to be able to communicate with hardware devices on a DMA channel must either be complemented with a VxD or request DMA through the VDS (Virtual DMA Specification) interface that the virtual direct access memory driver (VDMAD) implements.

2. Serialize the hardware with the I/O stream.

One of the toughest problems to attack in device driver writing is that the hardware normally does not execute synchronously with the software, that is, a hardware signal can come in any time, regardless of the state the software is in. Since the software may not be ready to process the hardware input when it comes in, some means must be provided to queue the hardware input until it can be processed, or conversely, queue output to the device until the device is ready to process it. Some operating systems (such as the VMM and Windows NT) provide a mechanism to do so; other devices may have to provide the data structures and control mechanisms themselves.

"Scheduling events" under the VMM and "queuing deferred procedure calls (DPCs)" under Windows NT are similar concepts that are provided for serialization purposes. Aside from that, both Windows NT and Windows 95 provide a set of synchronization primitives (mutexes, semaphores, and events) that can be employed to synchronize access to shared data.

3. Process requests from the operating system.

This step does not apply to all device drivers; for example, VxDs that virtualize hardware are generally not called from the operating system for each I/O request, but instead sort out the hardware input and output from and to the virtual machines. Those drivers that do process I/O requests will need to provide functions that the operating system will call whenever an application program submits an I/O request.

The function set to be provided by your driver is determined by the I/O model. For example, an MS-DOS block device driver will need to hook itself into the INT 13h chain, wait until an INT 13h is encountered, look up the desired function code in the AX machine register, and dispatch to the appropriate function. For a Windows physical mouse driver, the driver must call the mouse_event function as provided by Windows' USER module, whereas a Windows display driver would need to provide entry points for fairly specific output requests, such as Output, ExtTextOut, or StretchDIBits. It may even be the case that there is no I/O model provided (as is true for Windows physical drivers for nonsupported devices such as analog/digital converters, in which case you will need to define an I/O model yourself).

On the other side of the spectrum, a Windows NT device driver must register a set of callback functions in a data structure that is provided by the operating system. Once one of the callback functions has been invoked by Windows NT, a so-called I/O request packet (IRP) must be decoded and interpreted.

Almost any driver for a physical device will also need to initialize the device at some point. Depending on the I/O model, this will take place at a predefined point in time (such as in the implementation of the Enable function for Windows physical drivers or the Device_Init notification for virtual drivers) or on demand.

Note that in some cases, it might make sense to have the driver automatically test the hardware upon initialization; for example, many communications drivers probe the I/O ports they expect the communications ports to be attached to in order to gain some kind of heuristic information as to whether the port is physically installed.

5. Trap error conditions and provide recovery strategies.

Many possible error conditions may arise during an I/O operation, beginning with hardware failures, data losses occurring when internal buffers overflow, or power failures to such harmless things as a storage device being out of space to store yet another file. Depending on the I/O model provided by the operating system, such conditions can either be propagated back to the system or be processed by the driver. The Windows NT I/O system requires that most functions that can process any request called by the system must return a status value of type NTSTATUS. This and the requirement that all Windows NT I/O status values are global throughout the system ensures that error conditions are never left up to the driver to process but instead always get propagated back to Windows NT, which can then decide whether to pass the error value on to the requesting application or to invoke an error handler of its own.

Windows NT also provides a systemwide event logging mechanism that can be used, among other things, by device drivers to write failure messages into the event log. This feature is a great way to inform both users and system administrators of causes for failures in device drivers.

On the other hand, Windows physical device drivers may shut down the system altogether, and virtual device drivers may decide to terminate individual processes or shut down the system as well.

A Windows printer driver consists of code and data. The code includes functions which configure the printer, retrieve printer capabilities, and render output. The data includes structures which describe the supported printer resolutions, color capabilities, device-resident fonts, curve-drawing capabilities, line-drawing capabilities, and so on.

0.1.3.1 Required Printer-Driver Functions

All Windows printer drivers must support 24 required functions that are called by Windows GDI. These functions initialize the device, return device data, set the printer mode, and generate output. The following sections briefly describe these functions. For more information about these functions, see the Microsoft Windows Device Driver Adaptation Guide.

Initialization Functions

The initialization functions start and stop print jobs, allocate memory for a driver's data structures, deallocate memory that was used by a driver's data structures, and so on. The following briefly describes each function.

Function	Description

Control	The Control function performs device-dependent operations such as starting a print job, canceling a print job, processing a new band of bitmap data, and so on.

Disable	The Disable function deallocates memory used by the printer driver's data structures, and unloads the driver from memory if no other device contexts (DCs) exist for this device.

Enable	The Enable function allocates memory for and initializes the members within the driver's PDEVICE data structure. This data structure contains device-dependent data and device-state information.

WEP	The WEP (Windows Exit Program) function signals that the driver DLL will be removed from memory, or signals that Windows is shutting down.

Information Functions

The information functions retrieve color, font, pen, and brush information for a printer. The following briefly describes each function.

Function	Description

ColorInfo	The ColorInfo function translates physical colors to logical colors and logical colors to physical colors.

DevGetCharWidth	The DevGetCharWidth function returns width values for characters in a given printer font.

DeviceBitmap	The DeviceBitmap function is not supported in the current release of Windows. It must be implemented as a stub function.

EnumDFonts	The EnumDFonts function enumerates the fonts available on a printer.

EnumObj	The EnumObj function enumerates the pens and brushes (if any) which are available on a printer.

Output Functions

The output functions render output on a printer. The following briefly describes each function.

Function	Description

DevBitBlt	The DevBitBlt function sets pels on a page of printer paper. These pels correspond to bits in a source bitmap.

DevExtTextOut	The DevExtTextOut function renders text as well as a background pattern.

Output	The Output function renders a shape on a page of printer paper.

Pixel	The Pixel function sets a single pel on a page of printer paper.

ScanLR	The ScanLR function sets pels that appear on a single row or scan.

StrBlt	The StrBlt function renders scaled bitmaps.

Attribute Functions

The attribute functions initialize data structures for the printer driver. The following briefly describes each function.

Function	Description

RealizeObject	The RealizeObject function initializes a data structure for the specified pen, brush, font, and so on.

SetAttribute	The SetAttribute function is not supported in the current release of Windows. It must be implemented as a stub function.

Printer-Mode Functions

The printer-mode functions display special dialog boxes. The following briefly�describes each function.

Function	Description

DeviceMode	The DeviceMode function displays a dialog box that allows a user to select printer options such as paper size, paper orientation, output quality, and so on.

ExtDeviceMode	The ExtDeviceMode function also displays a dialog box that allows a user to select printer options such as paper size, paper orientation, output quality, and so on. Printer drivers written for Windows 3.x and later versions support this function.

Printer-Escape Functions

The printer-escape functions support device-specific operations. The following briefly describes these escape functions.

Escape function	Description

ABORTDOC	The ABORTDOC escape function signals the abnormal cancellation of a print job.

BANDINFO	The BANDINFO escape function returns information about a band of bitmap data.

ENDDOC	The ENDDOC escape function signals the end of a print job.

NEXTBAND	The NEXTBAND escape function prints a band of bitmap data.

QUERYESCSUPPORT	The QUERYESCSUPPORT escape function specifies whether the driver supports a specified escape.

SETABORTDOC	The SETABORTDOC escape function calls an application's cancellation procedure.

STARTDOC	The STARTDOC escape function signals the beginning of a print job.

The previous list of printer escapes is a list of escapes supported by the Microsoft Windows Universal Printer Driver (UNIDRV.DLL). It is not a comprehensive list of all Windows escape functions. Most of the escape functions now have equivalent Windows API functions with Windows 3.1. The escapes are supported for backward compatibility, but application developers are encouraged to start using the new API calls.

0.1.3.2 Required Printer-Driver Data Structures

There are two fundamental data structures used by GDI and a Windows printer driver: They are the GDIINFO and the PDEVICE data structures. The members of the GDIINFO data structure are initialized by Windows, and the members of the PDEVICE data structure are initialized by the printer driver.

GDIINFO Structure

The GDIINFO data structure contains device data required by GDI. This structure has the following format:

typedef struct _GDIINFO {

 int dpVersion

 int dpTechnology

 int dpHorzSize

 int dpVertSize

 int dpHorzRes

 int dpVertRes

 int dpBitsPixel

 int dpPlanes

 int dpNumBrushes

 int dpNumPens

 int futureuse

 int dpNumFonts

 int dpNumColors

 int dpDEVICEsize

 unsigned dpCurves

 unsigned dpLines

 unsigned dpPolygonals

 unsigned dpText

 unsigned dpClip

 unsigned dpRaster

 int dpAspectX

 int dpAspectY

 int dpAspectXY

 int dpStyleLen

 POINT dpMLoWin

 POINT dpMLoVpt

 POINT dpMHiWin

 POINT dpMHiVpt

 POINT dpELoWin

 POINT dpELoVpt

 POINT dpEHiWin

 POINT dpEHiVpt

 POINT dpTwpWin

 POINT dpTwpVpt

 short int dpLogPixelsX

 short int dpLogPixelsY

 short int dpDCManage

 short int dpCaps1

 long int dpSpotSizeX

 long int dpSpotSizeY

 short int dpPalColors

 short int dpPalReserved

 short int dpPalResolution

} GDIINFO;

This data structure contains three types of data:

·	Driver-management data

·	Driver-capabilities data

·	Driver-dimension data

The driver-management data specifies how GDI should manage multiple device contexts for a given driver.

The driver-capabilities data specifies physical capabilities of the device such as the number of predefined brushes and pens, the number of pure colors that the device supports, the device's curve-, line-, and polygon-rendering capabilities, and so on.

The driver-dimension data specifies the physical dimensions of the printable portion of a piece of printer paper, the number of bits required to represent a single dot on the page, the aspect ratio, and so on.

PDEVICE Structure

The PDEVICE data structure contains data that describes the current device context to the driver. This data includes an identifier for the current device font (if one is selected), a value specifying the output mode (portrait or landscape), an identifier for the selected paper tray, paper size, and so on. The format of this structure is device dependent.

